
CS 4530: Fundamentals of Software Engineering
Module 7: React

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Understand how the React framework binds data (and 
changes to it) to a UI

• Create simple React components that use state and 
properties

• Be able to map the three core steps of a test (construct, 
act, check) to UI component testing

2



HTML: The Markup Language of the 
Web
• Language for describing structure 

of a document

• Denotes hierarchy of elements

• What might be elements in this 
document?



Rich, interactive web apps
• Infinite scrolling of cats






Typical properties of web app Uis
Building abstractions for web app development?
• Each widget has both visual presentation & logic

• e.g., clicking on like button executes some logic related 
to the containing widget

• Logic and presentation of individual widget strongly 
related, loosely related to other widgets

• Some widgets occur more than once
• e.g., comment/like widgets

• Changes to data should cause changes to widget
• e.g., new images, new comments should show up in real 

time



Key Idea: Components
• Web pages are complex, with lots of logic 

and presentation 

• How can we organize web page to 
maximize modularity?

• Solution: Components - Easy to repeat, 
cohesive pieces of code (hopefully with 
low coupling)



Components
• Organize related logic and presentation 

into a single unit
• Includes necessary state and the logic for 

updating this state
• Includes presentation for rendering this state 

into HTML

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be 

rendered again



Components
Example: Like button component
• What does the button keep track of?

• Is it liked or not
• What post this is associated with

• What logic does the button have?
• When changing like status, send update to 

server

• How does the button look?
• Filled in if liked, hollow if not



Server side vs. client side
• Where should template/component be instantiated?

• Server-side frameworks: Template instantiated on server
• Examples: JSP, ColdFusion, PHP, ASP.NET
• Logic executes on server, generating HTML that is served to 

browser

• Front-end framework: Template runs in web browser
• Examples: React, Angular, Meteor, Ember, Aurelia, …
• Server passes template to browser; browser generates HTML 

on demand



Expressing Logic
• Templates/components require combining logic 

with HTML
• Conditionals - only display presentation if some 

expression is true
• Loops - repeat this template once for every item in 

collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP, Angular) 
• Embed HTML in code (React)



Embedding Code in HTML
• Template takes the form of an 

HTML file, with extensions
• Popular for server-side frameworks
• Uses another language (e.g., Java, 

C) or custom language to express 
logic

• Found in frameworks such as PHP, 
Angular, ColdFusion, ASP (NOT 
React)

• Can’t type check anything



Embedding HTML in TypeScript
Aka JSX or TSX
• How do you embed HTML in 

TypeScript and get syntax checking?
• Idea: extend the language: JSX, TSX

• JavaScript (or TypeScript) language, 
with additional feature that 
expressions may be HTML

• It’s a new language
• Browsers do not natively run JSX (or 

TypeScript)
• We use build tools that compile 

everything into JavaScript



React: Front End Framework for 
Components
• Created by Facebook
• Powerful abstractions for describing frontend UI 

components
• Official documentation & tutorials: 

https://reactjs.org/
• Key concepts:

• Embed HTML in TypeScript
• Track application “state”
• Automatically and efficiently re-render page in browser 

based on changes to state

https://reactjs.org/


Rich, interactive web apps
Infinite scrolling of cats

Built with React

Plus, AirBNB, Uber, Pinterest, 
Netflix, Twitter and 8855 more



Embedding HTML in TypeScript

• HTML embedded in TypeScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a 
value

• e.g., { 5 + 2 }, { foo() } 

• To wrap on multiple lines, wrap the TSX in (parentheses)
• Output of expression is HTML

return <div>Hello {someVariable}</div>;



Creating New React Applications
• React applications must be 

“transpiled” into a format that 
browsers can understand

• “Create React App” is a set of scripts 
to automate this all

• Get started: npx create-react-app 
my-app --template typescript

• Implement in App.tsx, run npm start
to run in web browser



Hello World in React

“Declare a Hello component”
Declares a new component 
that can be rendered by React

“Return the following HTML whenever the 
component is rendered”
The HTML is dynamically 
generated by the library.

export function HelloMessage(){
return <div>Hello, World!</div>

}

function App(){
return <HelloMessage />;

}

“Render a Hello Component”
Components are rendered as if they were 
HTML tags



You may see “Class” components, too – but 
we won’t write them

Hello World, Circa 2016
(Before the “Class” keyword!)

Hello World, Circa 2020
(Defined as a Class)

Hello World, Circa 2022 
(Defined as a function)

export function HelloMessage(){
return <div>Hello, World!</div>

}
class HelloMessage extends React.Component {
render(){
return <div>Hello, World!</div>

}
}

var HelloMessage = React.createClass({
render: function() {
return <div>Hello, World!</div>

}
})



React Components Can Receive Properties
• Properties are passed in an argument to the component
• Properties are specified as attributes when the 

component is instantiated
• Properties can not be changed by the component 
• Reminder: inside of HTML code, execute TypeScript code 

using {mustaches}

export function PersonalizedHello(props: {name: string}){
return <div>Hello, {props.name}! This is React!</div>

}

<PersonalizedHello name="Ripley" />



Component State is Data That Changes
• All internal component data that, when changed, 

should trigger UI update
• Stored as state variables in the component

• Created using useState<stateType>(defaultValue)
• E.g. const [isLiked, setIsLiked] = useState(false);
• Import useState from React

• The only way to change the value of a state variable is 
with the setter

• You could choose any names for the variable and its 
setter; for this class, please follow the convention of 
const [goodVariableName, setGoodVariableName] 



React State Example: “Like” Button

Goal: Add a “like” button: 
clicking it will toggle the 
state from liked to not liked



React State Example: “Like” Button

function PersonalizedLikableHello(props: { name: string }) {
const [isLiked, setIsLiked] = useState(false);
let likeButton;
if (isLiked) {
likeButton = (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
likeButton = (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} /> );
}
return (
<div>

Hello, {props.name}! This is React! {likeButton}
</div>

);
}

Create a state variable called isLiked, and a state setter, defaulting to false

Depending on the state, show a filled-in or outlined button

Each button has an alt-text label, an icon, and an onClick handler



Sidebar: React Has a Rich Component 
Library

Install UI libraries from 
NPM just like any other kind 
of module, e.g.
npm install --save @chakra-
ui/react



Nest Components, Passing State as 
Properties
• A common pattern in React is to store state in one component, 

and nest others in it, passing properties
• Example: Creating multiple PersonalizedHello’s:
export function MultiHellos() {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);

return (
<div>

{names.map((eachName) => (
<PersonalizedLikableHello name={eachName} />

))}
</div>

);
}

• Problem: How to add “delete” buttons?

Do not reference this slide for study (spoiler alert!)



Nest Components, Passing State (and setter) 
as Properties
• Add a “delete” button inside of each Hello Message
• What should the delete button do? The state with the list of 

names is stored in the MultiHellos component
• Solution: Pass an “onDelete” handler to each 

export function MultiHellos() {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={()=> setNames(names.filter(
filteredName => filteredName !== eachName))}/>

))}
</div>

);
}

Do not reference this slide for study (spoiler alert!)



React State Example: “Delete” Button

function PersonalizedLikableDeletableHello (
props: {name: string, onDelete: ()=> void }

) 
{

const [isLiked, setIsLiked] = useState(false);
let likeButton;
……

return (
<div>

Hello, {props.name}! This is React! {likeButton}
<IconButton aria-label='delete' icon={<AiTwotoneDelete />} onClick={props.onDelete} />

</div>
);

}

Create a state variable called isLiked, and a state setter, defaulting to false

onDelete prop of this 
button is connected to 
the onClick handler



Testing the “Delete” button
export function MultiHellos() {

const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={()=> setNames(names.filter(
filteredName => filteredName !== eachName))}/>

))}
</div>

);
}



Testing the Delete AND Like Buttons
export function MultiHellos() {

const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={()=> setNames(names.filter(
filteredName => filteredName !== eachName))}/>

))}
</div>

);
}



Reacting to change:
How does the page update automatically?
• Re-rendering is asynchronous: do not happen 

immediately upon calling a state setter
• Reconciliation: Framework diffs the previously rendered 

DOM with the new DOM, updating only part of DOM that 
changed

• Updating the DOM in the browser is slow - it is vital that 
React does efficient diff’ing

• Example: adding a new comment on a YouTube video 
shouldn’t make the browser re-layout the whole page



Reconciliation Must Differentiate Updates 
from Deletions/Additions

<div>
<PersonalizedLikableDeletableHello name="Ripley" />
<PersonalizedLikableDeletableHello name="Avery" /> /* isLiked=true */
<PersonalizedLikableDeletableHello name="Calin" />

</div>

<div>
<PersonalizedLikableDeletableHello name="Avery" />
<PersonalizedLikableDeletableHello name="Calin" /> /* isLiked=true */

</div>

Before deleting Ripley’s Greeting:

After deleting Ripley’s Greeting:

React processed this change as:
Ripley’s greeting becomes Avery’s greeting
Avery’s greeting becomes Calin’s greeting
Calin’s greeting is deleted



Reconciliation with Keys
• Add the “key” attribute to each component in a list
• Keys must be unique
• React will use the “key” to determine which elements are added, 

deleted, or re-ordered when re-rendered

31

export function MultiHellos() {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
key={eachName}
onDelete={()=> setNames(names.filter(filteredName => filteredName !== eachName))}/>

))}
</div>

);
}



Write UI component tests just like any other 
test
Follow the generic testing model from Module 2:

32

• Assemble the situation:
• Set up system under test (SUT) to get the state ready
• [Optional: Prepare collaborators]

• Act - Apply the operation inputs.
• Assess - Check the outputs, verify the state change, 

handle the behavior

1: Render component 
into a testing DOM tree

2: Interact with the 
rendered component

3: Check the rendered 
result



UI Testing Libraries make Component Tests 
Lightweight
• Render components into a “virtual DOM”

• Just like browser would, but no browser

• Interact with components by “firing events” like a 
user would

• Click, enter text, etc. on DOM nodes, just like a user 
would in a browser

• Inspect components that are rendered
• Tests specify how to “find” a component in that virtual 

DOM

33

“Testing Library”
https://testing-library.com

Compatible with many UI libraries 
and many testing frameworks

https://testing-library.com/


Rendering Components in Virtual DOM

• The render function prepares our component for 
testing:

• Creates a virtual DOM
• Instantiates our component, mounts it in DOM
• Mocks all behavior of the core of React
• Allows us to inspect the rendered result in the screen

import

34

let deleteCalled = false;
beforeEach(() => {
deleteCalled = false;
render(
<PersonalizedLikableDeletableHello name="Ripley"
onDelete={() => { deleteCalled = true; }} /> );

});

https://testing-library.com/docs/react-testing-library/api#render

https://testing-library.com/docs/react-testing-library/api#render


Inspecting Rendered Components: By Text

First approach to inspect rendered components: match by text

35

test("It renders the greeting", ()=>{
const greeting = screen.getByText(/Hello, Ripley!/);
expect(greeting).toBeInTheDocument();

})

return (
<div>
Hello, {props.name}! This is React! {likeButton}
<IconButton aria-label='delete' icon={<AiTwotoneDelete />}

onClick={props.onDelete} />
</div>

);

SUT

Test



Inspecting Rendered Components: ARIA 
label

36

test("Like button defaults to not liked, clicking it likes, clicking again 
unlikes", () => {
const likeButton = screen.getByLabelText("like");
fireEvent.click(likeButton);
const unLikeButton = screen.getByLabelText("unlike");
fireEvent.click(unLikeButton);
expect(screen.getByLabelText("like")).toBeInTheDocument();

});

if (isLiked) {
likeButton = (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
likeButton = (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} /> );
}

SUT

Test



3 Tiers for Inspecting Rendered Components

37

• Queries that reflect how every users interacts with your app
• byRole – Using accessibility tree
• byLabelText – Using label on form fields
• byPlaceHolderText – Using placeholder text on form field
• byText – By exact text in an element
• byDisplayValue – By current value in a form field

• Queries that reflect how some users interact with your app
• byAltText – By alt text, usually not presented to sighted users
• byTitle - By a “title” attribute, usually not presented to sighted users

• Queries that have nothing to do with how a user interacts with app
• byTestId

More: https://testing-library.com/docs/queries/about

https://testing-library.com/docs/queries/about


Testing Library Cheat Sheet
No Match 1 Match 1+ Match Await?

getBy throw return throw No

findBy throw return throw Yes

queryBy null return throw No

getAllBy throw array array No

findAllBy throw array array Yes

queryAllBy [] array array No

• Get and query have different 
behavior when there are 
different numbers of matches

• Find is async and will return a 
promise to wait for all rendering 
to complete

38https://testing-library.com/docs/react-testing-library/cheatsheet

https://testing-library.com/docs/react-testing-library/cheatsheet


Review
• Now that you've studied this lesson, you should be 

able to:
• Understand how the React framework binds data (and 

changes to it) to a UI
• Create simple React components that use state and 

properties
• Be able to map the three core steps of a test (construct, 

act, check) to UI component testing
• The next lesson will include a deep-dive on patterns of 

React, including useState and its friend, useEffect

39


	CS 4530: Fundamentals of Software Engineering�Module 7: React
	Learning Objectives for this Lesson
	HTML: The Markup Language of the Web
	Rich, interactive web apps
	Typical properties of web app Uis�Building abstractions for web app development?
	Key Idea: Components
	Components
	Components�Example: Like button component
	Server side vs. client side
	Expressing Logic
	Embedding Code in HTML
	Embedding HTML in TypeScript�Aka JSX or TSX
	React: Front End Framework for Components
	Rich, interactive web apps�Infinite scrolling of cats
	Embedding HTML in TypeScript
	Creating New React Applications
	Hello World in React
	You may see “Class” components, too – but we won’t write them
	React Components Can Receive Properties
	Component State is Data That Changes
	React State Example: “Like” Button
	React State Example: “Like” Button
	Sidebar: React Has a Rich Component Library
	Nest Components, Passing State as Properties
	Nest Components, Passing State (and setter) as Properties
	React State Example: “Delete” Button
	Testing the “Delete” button
	Testing the Delete AND Like Buttons
	Reacting to change:�How does the page update automatically?
	Reconciliation Must Differentiate Updates from Deletions/Additions
	Reconciliation with Keys
	Write UI component tests just like any other test
	UI Testing Libraries make Component Tests Lightweight
	Rendering Components in Virtual DOM
	Inspecting Rendered Components: By Text
	Inspecting Rendered Components: ARIA label
	3 Tiers for Inspecting Rendered Components
	Testing Library Cheat Sheet
	Review

