CS 4530: Fundamentals of Software Engineering
Module 7: React

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:

* Understand how the React framework binds data (and
changes to it) to a Ul

* Create simple React components that use state and
properties

* Be able to map the three core steps of a test (construct,
act, check) to Ul component testing

HTML: The Markup Language of the

Web

* Language for describing structure
of a document

* Denotes hierarchy of elements

* What might be elements in this
document?

Read moreon Dighal sconomy or
MediaGuardian.couk -

Interview Rio Caraeff

Vevo revolutionary

Universal's former mohile chief is leading the music industry’s fight to shake up online video. He reveals his
frustration with MTV. and says why no one need own music if his site succeeds. Interview by Mark Sweney

i only scalable
mixdel for the music

; industry; the question
% is, how doyou do that
and make money?

Rich, interactive web apps

* Infinite scrolling of cats

e@e< > DN O | & facebook.com 4 N Wul a +
(£ 10 a PP s = +008 -
Q0 ¢
o Like (D Comment 2> Share
®® @

ﬁ Write a comment...

Dhennya Campos
September 14 at 5:56 AM - &

—
Andrea Gutierres
September 9 at 1:17 PM - @
©

Fago o que quero, onde quero humano &

Crédito .- @grarcia
Display amenu @amadosfelinos

Typical properties of web app Uis
Building abstractions for web app development?

* Each widget has both visual presentation & logic

* e.g., clicking on like button executes some logic related
to the containing widget

* Logic and presentation of individual widget strongly
related, loosely related to other widgets
 Some widgets occur more than once
e e.g., comment/like widgets

* Changes to data should cause changes to widget

* e.g., new images, new comments should show up in real
time

Qv N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &3

f8%) bowiespacecat

Key Idea: Components

* Web pages are complex, with lots of logic
and presentation

* How can we organize web page to
maximize modularity?

* Solution: Components - Easy to repeat,
cohesive pieces of code (hopefully with

low coupling)

|Q9QV| N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &3

f8%) bowiespacecat

Components

* Organize related logic and presentation
into a single unit

* Includes necessary state and the logic for
updating this state

* Includes presentation for rendering this state
into HTML

* Synchronizes state and visual presentation

* Whenever state changes, HTML should be
rendered again

|Q9QV| N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &3

Components P
Example: Like button comp

 What does the button keep track of?
* |s it liked or not
* What post this is associated with

* What logic does the button have?

* When changing like status, send update to
server

e How does the button look?
* Filled in if liked, hollow if not

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &3

Server side vs. client side

* Where should template/component be instantiated?

e Server-side frameworks: Template instantiated on server
 Examples: JSP, ColdFusion, PHP, ASP.NET

* Logic executes on server, generating HTML that is served to
browser

* Front-end framework: Template runs in web browser

 Examples: React, Angular, Meteor, Ember, Aurelia, ...

* Server passes template to browser; browser generates HTML
on demand

Expressing Logic

* Templates/components require combining logic
with HTML

* Conditionals - only display presentation if some
expression is true

* Loops - repeat this template once for every item in
collection

* How should this be expressed?
* Embed code in HTML (ColdFusion, JSP, Angular)
* Embed HTML in code (React)

Embedding Code in HTML

* Template takes the form of an <html> |
. . . <head»<title>First JSP</title»</head>
HTML file, with extensions <bocy>
4
* Popular for server-side frameworks double num = Math.random();
if (num > 8.55) {
* Uses another language (e.g., Java, %
<h2>¥You'll have a luck day!</h2><p>(<i= num %>)</p>»
C) or custom language to express %
logic RESS
° Found in frameworks SUCh as PHP <h2>Well, life goes on ... </h2><p>(<¥= num %>)</p>
’ <
Angular, ColdFusion, ASP (NOT R
React)

e Can’t type check anything

Embedding HTML in TypeScript

Aka JSX or TSX

* How do you embed HTML in
TypeScript and get syntax checking?

* |dea: extend the language: JSX, TSX

 JavaScript (or TypeScript) language,
with additional feature that
expressions may be HTML

* It’'s a new language

e Browsers do not natively run JSX (or
TypeScript)

* We use build tools that compile
everything into JavaScript

}

1 HelloMessage(props

(

< >
Hello, {props.name}
>

)

ReactDOM. render(
< . 7 . F . 1 >

);

<HelloMessage name='Satya’ />
</Rec Senil, C pae >,
document.getElementById('root"')

IProps) {

React: Front End Framework for
Components

* Created by Facebook

* Powerful abstractions for describing frontend Ul
components

e Official documentation & tutorials:
https://reactjs.org/

* Key concepts:
* Embed HTML in TypeScript
* Track application “state”

e Automatically and efficiently re-render page in browser
based on changes to state

https://reactjs.org/

Rich, interactive web apps
Infinite scrolling of cats

ece <Jo

|
’o

@ facebook.com < () [ii] =8 @ ® <> m O @ instagram.com ¢

ﬁ Q - P O = — h Sh S 48 i ctramem e a v 5 QO W

©0 s
o) Like

ﬂ Write a commen

mgBuilt with React

. = g S
-
= ¢ 8 .

Plus, AerNB Uber, Pmterest
Netfllx TW|tter and 8855 more

tofuminou @ragdolls roosevelt_n_percival & Thanks! v
tofuminou @toffeeandfudgemeow & Thank you! %

2 DAYS AGO

— L |
Andrea Gutierres
September 9 at 1:17 PM - @

Faco o que quero, onde quero humano &
s R Add a comment...
i ; =
Crédito .~ @grarcia
Display a menu @amadosfelinos Display a menu

4

34

Embedding HTML in TypeScript

return <div>Hello {someVariable}</div>;
* HTML embedded in TypeScript

 HTML can be used as an expression
 HTML is checked for correct syntax

e Can use { expr } to evaluate an expression and return a
value
ceg,{5+2} {foo()}

* To wrap on multiple lines, wrap the TSX in (parentheses)
e Output of expression is HTML

Creating New React Applications

* React applications must be
py .) - eoe M+ <« O 0 create-react-app.dev & © M + O
transpiled” into a format that
browsers can understand T &

* “Create React App” is a set of scripts
to automate this all

* Get started: npx create-react-app
my—-app —-—-template typescript

. Create React App
° Implement In App'tsx’ run npm Start Set up a modern web app by running one command.

to run in web browser

Less to Learn

You don't need to learn and configure many build tools. Instant reloads help you focus on development. When it's time

to deploy, your bundles are optimized automatically.

Onlv One Debendencyv

Hello World in React

export function HelloMessage () {
return <div>Hello, World!</div>

}

“Declare a Hello component” “Return the following HTML whenever the

Declares a new component component is rendered”
that can be rendered by React
The HTML is dynamically

generated by the library.

function App () {
return <HelloMessage />;
} Components are rendered as if they were
HTML tags

“Render a Hello Component”

You may see “Class” components, too — but

we won't write them

var HelloMessage = React.createClass({
render: function() {
return <div>Hello, World!</div>
}
})

Hello World, Circa 2016
(Before the “Class” keyword!)

class HelloMessage extends React.Component {
render () {
return <div>Hello, World!</div>

}

export function HelloMessage () {
return <div>Hello, World!</div>

}

Hello World, Circa 2020
(Defined as a Class)

Hello World, Circa 2022
(Defined as a function)

React Components Can Receive Properties

* Properties are passed in an argument to the component

* Properties are specified as attributes when the
component is instantiated

* Properties can not be changed by the component

* Reminder: inside of HTML code, execute TypeScript code
using {mustaches}

export function PersonalizedHello (props: {name: string}) {
return <div>Hello, {props.name}! This is React!</div>

}

<PersonalizedHello name="Riplevy" />
PLey eoe ([~

Hello, Ripley! This is React!

Component State is Data That Changes

* All internal component data that, when changed,
should trigger Ul update

e Stored as state variables in the component
* Created using useState<stateType>(defaultValue)
* E.g.const [isLiked, setlsLiked] = useState(false);
* Import useState from React

* The only way to change the value of a state variable is
with the setter

* You could choose any names for the variable and its
setter; for this class, please follow the convention of
const [goodVariableName, setGoodVariableName]

React State Example: “Like” Button

eoe [-~ localhost ¢l © »

Goal: Add a “like” button:
clicking it will toggle the
state from liked to not liked

Hello, Ripley! Thisis React! ©

@ ® [J v localhost

'Hello, Ripley! This is React! ®

React State Example: “Like” Button

[Create a state variable called isLiked, and a state setter, defaulting to false }

function PersonalizedLikableHello(props:\% name: string }) {

const [1slLiked, setlIslLiked] = useState(false);
let likeButton;
if (isLiked) { M Depending on the state, show a filled-in or outlined button J
likeButton = (<IconButton aria-label="unlike"
icon={<AiFillHeart />} onClick={() => setIslLiked(false)} />);
} else {
likeButton = (<IconButton aria-label="1ike"
icon={<AiOutlineHeart />h§SnClick={() => setIsLiked (true)} />);
} a8e HIiY ¢« > localhost ¢ ©
return (
<div>

'®_ React App
Hello, {props.name}! This 1is

</div> Hello, Ripley! This is React! v
) ;

Sidebar: React Has a Rich Component
Library

chakra

® Getting Started

@ Styled System

B Components
¢ Hooks
& Community

B Changelog

B3 Blog

LAYOUT
Aspect Ratio
Box

Center
Container
Flex

Grid

Q_ Search the docs

Components

o | vazIv Tnstall UT libraries from
NPW just like any other kind
of module, €.0).

npm install --save (@chakra-
ui/react

Chakra Ul provides prebuild components to help you build your projects faster Here is an overview of

the component categories:

Disclosure

Accordion

Feedback

Tabs

Visual

Avatar with badge

In some products, you might need to show a badge on the right corner of the avatar. We call this a

badge. Here's an example that shows if the user is online:

EDITABLE EXAMPLE

<Stack direction="'row' spacing={4}>

<Avatar>
<AvatarBadge boxSize='1l.25em' bg='green.500' />
</Avatar>
{
<Avatar>
<AvatarBadge borderColor="'papayawhip' bg='tomato' boxSize='l.25em' />
</Avatar>
</Stack>

Nest Components, Passing State as
Properties

* Acommon pattern in React is to store state in one component,
and nest others in it, passing properties
* Example: Creating multiple PersonalizedHello’s:

export function MultiHellos () {

const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (
<div>
{names.map ((eachName) => (

<PersonalizedLikableHello name={eachName} />

)) }
</div>

) .
’ eoe [- < O localhost

}

[Hello, Ripley! This is React! ©

* Problem: How to add “delete” buttons?

[Hello, Avery! This is React! ©

[Hello, CalinT Thisis React! ©

Do not reference this slide for study (spoiler alert!)

Nest Components, Passing State (and setter)

as Properties

* Add a “delete” button inside of each Hello Message

* What should the delete button do? The state with the list of
names is stored in the MultiHellos component

e Solution: Pass an “onDelete” handler to each

export function MultiHellos() {

const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>
{names.map ((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={ ()=> setNames (names.filter (
filteredName => filteredName !== eachName)) }/>
)) } eoe [-~ <) localhost ©)
. </div> Hello, Ripley! This is React! © |
} Hello, Avery! Thisis React! © & |
O w |

Do not reference this slide for study (spoiler alert!)

Hello, Calin! This is React!

React State Example: "Delete” Button

[Create a state variable called isLiked, and a state setter, defaulting to false }

function PersonalizedLikableDeletableHel&A (
props: {name: string, onDelete: ()=> void }

)

const [isLiked, setIsLiked] = useState(false); onDelete prop of this

let likeButton; button is connected to
...... the onClick handler

return (
<div>
Hello, {props.name}! This is React! {likeButton}
<IconButton aria-label="delete' icon={<AiTwotoneDelete />} onClick={props.onDelete} />
</div>
) ;

Testing the “"Delete” button

export function MultiHellos () {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>
{names.map ((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={ ()=> setNames (names.filter (
filteredName => filteredName !== eachName)) }/>
))}
</div>

Hello, Ripley! This is React! ©
Hello, Avery! Thisis React! © =
\Hello, Calinl ThisisReact! © w

Testing the Delete AND Like Buttons

export function MultiHellos () {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>
{names.map ((eachName

<PersonalizedLik
onDelete={ ()=> ¢ Checktherender method of "MultiHellos'. See https://reactjs.org/link/warning-keys for more

©® » Warning: Each child in a list should printWarning — react-jsx-dev-runtime.development.js:87
have a unique "key" prop.

. information.
filteredName => 11_ PersonalizedLikableDeletableHello@http://localhost:3000/static/js/bundle.js:91:80
)) } MultiHellos@http://localhost:3000/static/js/bundle.js:161:76
</div> App

) ;

Hello, Ripley! ThisisReact! © #®
Hello, Avery! Thisis React! © #
Hello, Calin! Thisis React! © ®

Reacting to change:
How does the page update automatically?

* Re-rendering is asynchronous: do not happen
immediately upon calling a state setter

* Reconciliation: Framework diffs the previously rendered
DOM with the new DOM, updating only part of DOM that
changed

* Updating the DOM in the browser is slow - it is vital that
React does efficient diff'ing

* Example: adding a new comment on a YouTube video
shouldn’t make the browser re-layout the whole page

Reconciliation Must Differentiate Updates
from Deletions/Additions

Before deleting Ripley’s Greatina:

© » Warning: Each child in a list should printWarning — react-jsx-dev-runtime.development.js:87
<div> have a unique "key" prop.
<PersonalizedLilkableD:x Check the render method of “MultiHellos". See https://reactjs.org/link/warning-keys for more
<PersonalizedlLikableD¢ Information.

. . 1 PersonalizedLikableDeletableHello@http://localhost:3000/static/js/bundle.js:91:80
<PersonalizedLikableDd MultiHellos@http://localhost:3000/static/js/bundle.js:161:76

</div> App

After deleting Ripley’s Greeting: 1

<div>
<PersonalizedLikableDeletableHello name="Avery" />
<PersonalizedLikableDeletableHello name="Calin" /> /* isLiked=true */

</div> React processed this change as:

Ripley’s greeting becomes Avery’s greeting
Avery’s greeting becomes Calin’s greeting
Calin’s greeting is deleted

Reconciliation with Keys

* Add the “key” attribute to each componentin a list

* Keys must be unique

* React will use the “key” to determine which elements are added,
deleted, or re-ordered when re-rendered

export function MultiHellos () {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>
{names.map ((eachName) => (

<PersonalizedLikableDeletableHello name={eachName}
key={eachName}
onDelete={ ()=> setNames (names.filter (filteredName => filteredName !== eachName)) }/>
))}
</div>
) ;

} 31

Write UI component tests just like any other

test

Follow the generic testing model from Module 2:

e Assemble the situation:

e Set up system under test (SUT) to get the state ready
* [Optional: Prepare collaborators]

* Act - Apply the operation inputs.

1: Render component
into a testing DOM tree

* Assess - Check the outputs, verify the state change,
handle the behavior

2: Interact with the
rendered component

3: Check the rendered
result

32

UI Testing Libraries make Component Tests

Lightweight

 Render components into a “virtual DOM”
e Just like browser would, but no browser

* Interact with components by “firing events” like a

user would
* Click, enter text, etc. on DOM nodes, just like a user

would in a browser

* Inspect components that are rendered

* Tests specify how to “find” a component in that virtual
DOM

“Testing Library”
https://testing-library.com
Compatible with many Ul libraries
and many testing frameworks

33

https://testing-library.com/

Rendering Components in Virtual DOM

let deleteCalled = false;
beforeEach(() => {
deleteCalled = false;
render (
<PersonalizedLikableDeletableHello name="Ripley"
onDelete={ () => { deleteCalled = true; }} />);

1) s
* The render function prepares our component for
testing:
* Creates a virtual DOM

* Instantiates our component, mounts it in DOM
* Mocks all behavior of the core of React

* Allows us to inspect the rendered result in the screen
import

https://testing-library.com/docs/react-testing-library/api#trender

https://testing-library.com/docs/react-testing-library/api#render

Inspecting Rendered Components: By Text

SUT

Test

return (
<div>
Hello, {props.name}! This 1s React! {likeButton}
<IconButton aria-label='delete' icon={<AiTwotoneDelete />}
onClick={props.onbDelete} />
</div>
) ;

test ("It renders the greeting", ()=>{

const greeting = screen.getByText (/Hello, Ripley!/);
expect (greeting) .toBeInTheDocument () ;

})

First approach to inspect rendered components: match by text

35

Inspecting Rendered Components: ARIA
label

SUT

Test

if (isLiked) {
likeButton = (<IconButton aria-label="unlike"
icon={<AiFillHeart />} onClick={() => setIslLiked(false)} />);
} else {
likeButton = (<IconButton aria-label="1ike"
icon={<AiOutlineHeart />} onClick={ () => setIslLiked(true)} />);
}

test("Like button defaults to not liked, clicking it likes, clicking again
unlikes", () => {
const likeButton = screen.getByLabelText("like");
fireEvent.click(likeButton) ;
const unlLikeButton = screen.getByLabelText("unlike");
fireEvent.click (unLikeButton) ;

expect (screen.getByLabelText ("1like")) .toBeInTheDocument () ;
b) g

36

3 Tiers for Inspecting Rendered Components

* Queries that reflect how every users interacts with your app

* byRole — Using accessibility tree

* bylLabelText — Using label on form fields

* byPlaceHolderText — Using placeholder text on form field
* byText — By exact textin an element

* byDisplayValue — By current value in a form field

e Queries that reflect how some users interact with your app
* byAltText — By alt text, usually not presented to sighted users
* byTitle - By a “title” attribute, usually not presented to sighted users

* Queries that have nothing to do with how a user interacts with app

* byTestld

More: https://testing-library.com/docs/queries/about

37

https://testing-library.com/docs/queries/about

Testing Library Cheat Sheet

No Match | 1 Match | 1+ Match | Await?
getBy throw return throw No
findBy throw return throw Yes
queryBy null return throw No
getAllBy throw array array No
findAlIBy throw array array Yes
queryAllBy | [] array array No

e Get and query have different
behavior when there are
different numbers of matches

* Find is async and will return a
promise to wait for all rendering
to complete

https://testing-library.com/docs/react-testing-library/cheatsheet 38

https://testing-library.com/docs/react-testing-library/cheatsheet

Review

* Now that you've studied this lesson, you should be
able to:

* Understand how the React framework binds data (and
changes to it) to a Ul

* Create simple React components that use state and
properties

* Be able to map the three core steps of a test (construct,
act, check) to Ul component testing

* The next lesson will include a deep-dive on patterns of
React, including useState and its friend, useEffect

	CS 4530: Fundamentals of Software Engineering�Module 7: React
	Learning Objectives for this Lesson
	HTML: The Markup Language of the Web
	Rich, interactive web apps
	Typical properties of web app Uis�Building abstractions for web app development?
	Key Idea: Components
	Components
	Components�Example: Like button component
	Server side vs. client side
	Expressing Logic
	Embedding Code in HTML
	Embedding HTML in TypeScript�Aka JSX or TSX
	React: Front End Framework for Components
	Rich, interactive web apps�Infinite scrolling of cats
	Embedding HTML in TypeScript
	Creating New React Applications
	Hello World in React
	You may see “Class” components, too – but we won’t write them
	React Components Can Receive Properties
	Component State is Data That Changes
	React State Example: “Like” Button
	React State Example: “Like” Button
	Sidebar: React Has a Rich Component Library
	Nest Components, Passing State as Properties
	Nest Components, Passing State (and setter) as Properties
	React State Example: “Delete” Button
	Testing the “Delete” button
	Testing the Delete AND Like Buttons
	Reacting to change:�How does the page update automatically?
	Reconciliation Must Differentiate Updates from Deletions/Additions
	Reconciliation with Keys
	Write UI component tests just like any other test
	UI Testing Libraries make Component Tests Lightweight
	Rendering Components in Virtual DOM
	Inspecting Rendered Components: By Text
	Inspecting Rendered Components: ARIA label
	3 Tiers for Inspecting Rendered Components
	Testing Library Cheat Sheet
	Review

